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OBJECTIVES

The objectives of this project are to seek a better understanding” of electron
transport in single molecules and to develop a molecular electronic device that can
communicate with the outside world in a more practical way than the existing methods.
In order to reach the objectives, we will perform the following two tasks:

o Investigate electron transfer through single molecules;
o Fabricate a stable and controllable molecular junction.

STATUS OF EFFORT

We have accomplished both tasks stated above and are ready for the next step -
building a prototype molecular device based on single molecules. For the first task, we
have developed a novel electrochemical technique to fabricate nanoelectrodes
separated with an appropriate gap for molecular connection. It starts with a thin metal
wire coated with an insulation layer except for a small portion near the center (Fig. 1a),
and then etches the center portion electrochemically while monitoring the current
through the wire (Fig. 1b). As the diameter of the center portion decreases to the
electron wavelength (a few A), the conductance becomes quantized and an atomically
thin wire is formed. Further etching away the last few atoms produces a pair of
nanoelectrodes separated with a small gap, and the ballistic transport responsible for
the conductance quantization is replaced by quantum tunneling across the gap (Fig.
1c). As we shall show below, the tunneling current is also quantized because of the
discrete nature of atoms, which can be used to control the gap width with atomic
precision. Once a pair of nanoelectrodes with an appropriate gap is formed, we then
bridge the gap with molecules by electrochemical deposition (Fig. 1d). In order to
quickly fabricate a large array of the nanoelectrodes, we are currently testing a self-
terminated method in collaboration with Motorola. We carried out the second task using
conducting polymers as a model system. Conducting polymers are attractive electronic
materials for a number of reasons. First, similar to traditional semiconductors their
electrical conductivity can be varied over many orders of magnitude, which can be
controlled electrochemically. Second, they are mechanically flexible, which is important




for flexible devices. Finally they are chemically flexible in the sense that many different
side branches can be attached to the polymer to tune their electronic and mechanical
properties in a tailored fashion. We electrochemically polymerized monomers into
polymers and deposited the polymers to bridge the nanoelectrodes fabricated in task 1.
One of the most interesting observations is a discrete switching in the conductance of
the polymer nanojunction between insulating and conducting states, which may be used
as a digital switch controlled by the redox state of the polymer.

We provide below with a summary of the findings.

Fig. 1. (a) Microfabricated metal wires on a silicon substrate. (b) When the narrowest portion of
the wire is etched down to the atomic scale, its conductance becomes quantized. (c) Further
etching away the remaining few atoms, a pair of nanoelectrodes with a small gap is formed and
conductance quantization is replaced by quantum tunneling. (d) By bridging the gap with a
molecule, one can connect the molecule to the outside world.

ACCOMPLISHMENTS/NEW FINDINGS
Fabrication of stable metallic quantum wire arrays

We have developed a simple method to fabricate stable metallic quantum wires by
electrochemically etching a metal wire down to the atomic scale. The conductance of
the wire is quantized, given approximately by integer multiples of Gg (=2e2/h (Fig. 2).
This interesting conductance quantization phenomenon has been observed in
semiconductor devices containing a two dimensional electron gas, and in three-
dimensional metallic nanowires created mechanically by breaking two electrodes from
contact. Because the wavelength of the conduction electrons in metals is of the order of
a few A, one expects that the wire with conductance quantized at the lowest quantum
step Go be as thin as a single atom. This argument has been recently confirmed by
high-resolution transmission electron microscopy that reveals a metallic quantum wire
consisting of a string of atoms. We have been able to fabricate an array of the quantum
wires with long-term stability (Fig. 2c).

A unique advantage of our method is to fabricate an array of stable quantum wires
supported on a solid substrate. In collaboration with Motorola we have demonstrated a
1x15 array of Cu quantum wires supported on an oxidized silicon chip. Using the wires,
we have studied chemical sensing possibility based on molecular adsorption-induced
conductance changes in the quantum wires.
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Fig. 2 (a-b) Conductance of a Cu quantum wire during etching (a) and deposition (b). The
stepwise change is due to conductance quantization. (c) Stable Cu nanowires with conductance
at N=1, 2 and 3 quantum steps.

Molecular detection with metallic quantum wires

We have observed that the conductance of the quantum wires drops abruptly to a
fractional value upon molecular adsorption (Fig. 3). The largest drop in conductance
occurs in the quantum wires with conductance at the lowest quantum step, and the drop
diminishes quickly at higher steps as the quantum ballistic regime is replaced by the
classical diffusive regime. The conductance change correlates with the binding strength
of the molecules to the metal wires. These observations suggest the possibility of
chemical sensor applications based on the adsorbate-induced changes in the quantized
conductance of the nanowires, but the mechanism of the conductance change is not
understood. One possible mechanism is the scattering of conduction electrons by
adsorbates, which reduces the conductance. This theory explains naturally the
decreases in the conductance but fails to explain other experimental facts. For
example, the mechanical stability of the quantum wires is strongly dependent on
molecular adsorption. We have studied the mechanical stability by pulling a quantum
wire with a STM and found that the length over which the wire can be elongated before
breaking is much longer in the presence of molecular adsorption (Fig. 4). So it is clear
that the binding of a molecule onto an atomically thin metal wire affects the mechanical
properties of the wire.
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Fabrication of nanoelectrodes with molecular scale gaps

Starting with a metallic quantum wire, we have created a small gap separating two
nanoelectrodes by etching away a few atoms in the narrowest portion of the quantum
wire. Consequently, the conductance collapses from the lowest quantum step as
ballistic electron transport is replaced by quantum tunneling. The tunneling current also
changes in a stepwise fashion (Fig. 5), but the step height is 3-4 orders of magnitude
smaller than conductance quantum, 2e2/h. Furthermore, the steps in the tunneling
current are not equally spaced, instead their heights increase exponentially with the




current (note that logarithmic scale is used in Fig. 5). The stepwise tunneling current is
due to the discrete nature of atoms.

Knowing the tunneling current, the width of the gap can be estimated using
relation, I, ~ exp(—ks) , where l¢ is the tunneling current, s is the gap width and k is 0.98

+ 0.12 A", determined experimentally under a similar condition using a STM setup
(inset at upper left corner of Fig. 5a). The corresponding discrete change in the gap
width is typically ~ 0.5 A, which is smaller than the size of an atom, due to atomic
reconfiguration. The tendency that the gap stabilizes at discrete steps of ~ 0.5 A makes
it possible to fabricate nanogaps with sub-angstrom precision. Using the procedure we
have been able to fabricate molecular scale gaps with a precision of ~ 0.5 A (Fig. 5,
right). The gap width sometimes fluctuates between plateaus with a typical height of ~
0.5 A (insets of Fig. 5, right). We attributed the fluctuations to a dynamic equilibrium
between deposition and etching that switch the atoms between two stable
configurations. '

600 ) 1000
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Fig. 5 Left: Tunneling current changes in a stepwise fashion as the gap is widened
(narrowed) by electrochemical etching (deposition), due to the discrete nature of atoms. The
current often steps down intermittently (inset, lower right corner) and shown as “noise” in
the tunneling current (marked by circles). Right: Molecular-scale gap between two-
electrodes on an oxidized Si can be fabricated and stabilized with a precision of ~ 0.5 A
using the tunneling current as feedback signal. Fluctuations between two stable
configurations, corresponding to a gap width change of ~ 0.5 A, are frequently observed.

Connecting molecules to the nanoelectrodes

By bridging the nanoelectrodes with molecules, we can, therefore, connect the
molecules to the external measurement and control units. One example is 1,10°




phenanthroline, a molecule that has two nitrogen atoms ready to bind to transition
metals, such as Au and Cu. After connecting the molecule to the nanoelectrodes, we
have measured the |-V characteristics, as shown in Fig. 6. The step at ~ -1.5 V and kink
at ~ 1.4 V are tentatively attributed to a HOMO (highest occupied molecular orbital) and
LUMO (lowest unoccupied molecular orbital) assisted tunneling. Given the size of the
gap it is likely that one or a few molecules dominates the tunneling current, but it is not
clear exactly how many molecules bridge the gap.
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Fig. 6 (a) Schematic of electron transport through phenanthroline between a pair of Au
nanoelectrodes fabricated with the electrochemical etching and deposition method. (b) -V
_ characteristic at 77 K. (¢) Schematic of energy diagram of phenanthroline. :

We have also investigated electron transport through conducting polymer
nanojunction formed between the nanoelectrodes. In sharp contrast to
microelectrochemical transistor whose conductance varies smoothly between insulating
and conducting states as a function of the electrochemical potential, the polymer
nanojunction switches abruptly between the insulating and conducting (or off and on)
states in a fashion similar to a digital switch (Fig. 7). The nanojunction can switch much
faster and with less power than the bulk materials. We have also studied the |-V
characteristics of the polyaniline nanowire (Fig. 8). When the “gate” is kept near 0 V (vs.
a Ag reference electrode), the |-V curve is linear, similar to that of a metallic wire.
Lowering the “gate” below -0.2 V, however, the current vanishes at negative bias
sweeps but it increases rapidly at positive bias sweeps. The rectifying characteristic is
more pronounced when lowering the “gate” potential to -0.3 V. Our experiment shows
that interesting new phenomena occur by reducing the size of the polymer junction.
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Fig. 7. A polyaniline nanojunction switch. Charge transport current vs. electrochemical potential
for polyaniline nanojunctions with two Au nanoelectrodes separated with ~ 50 nm (a) and ~ 1
nm (b). The bias voltage between the nanoelectrodes in each case is 20 mV.
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TECHNOLOGY TRANSFER

The quantum electronics lab of Motorola has been using the technique developed in
this project to fabricated nanoelectrodes for molecular electronics applications.
Semiconductor Research Corporation has provided a $35,000 to further develop the
techniques to fabricated single molecular junctions.
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